Numerical Implementation of BDF2 via Method of Lines for Time Dependent Nonlinear Burgers’ Equation

نویسنده

  • Ashish Awasthi
چکیده

In this paper an efficient unconditionally stable numerical scheme is proposed for solving one dimensional quasi linear Burgers’ equation. The proposed scheme comprises of semi discretization via method of lines for the space variable and backward differentiation formula of order two (BDF2) for the time variable. The method of lines reduces the quasi linear partial differential equation in to nonlinear ordinary differential equations at each node point. The resulting nonlinear system is solved by an efficient stiff solver known as BDF2. BDF2 is an implicit solver which leads to nonlinear algebraic system and the resulting nonlinear algebraic system is linearized via Taylor series. This linearization technique is easy to implement and the accuracy of the method will remain unchanged. The linearized system of algebraic equations is solved using MATLAB 8.0. The proposed scheme is implemented on test examples and it has been observed that the numerical solution lies very close to the exact solution. Various numerical experiments have been carried out to demonstrate the performance of the method. Index Terms – Burgers’ equation ; Kinematic viscosity; Method of lines; Backward Differentiation Formula; Taylor series. ——————————  ——————————

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The use of radial basis functions by variable shape parameter for solving partial differential equations

In this paper, some meshless methods based on the local Newton basis functions are used to solve some time dependent partial differential equations. For stability reasons, used variably scaled radial kernels for constructing Newton basis functions. In continuation, with considering presented basis functions as trial functions, approximated solution functions in the event of spatial variable wit...

متن کامل

Solving a nonlinear inverse system of Burgers equations

By applying finite difference formula to time discretization and the cubic B-splines for spatial variable, a numerical method for solving the inverse system of Burgers equations is presented. Also, the convergence analysis and stability for this problem are investigated and the order of convergence is obtained. By using two test problems, the accuracy of presented method is verified. Additional...

متن کامل

The Solution of Coupled Nonlinear Burgers' Equations Using Interval Finite-difference ‎Method

In this paper an coupled Burgers' equation is considered and then a method entitled interval finite-difference method is introduced to find the approximate interval solution of interval model in level wise cases. Finally for more illustration, the convergence theorem is confirmed and a numerical example is solved.

متن کامل

Numerical solution of non-planar Burgers equation by Haar wavelet method

In this paper, an efficient numerical scheme based on uniform Haar wavelets is used to solve the non-planar Burgers equation. The quasilinearization technique is used to conveniently handle the nonlinear terms in the non-planar Burgers equation. The basic idea of Haar wavelet collocation method is to convert the partial differential equation into a system of algebraic equations that involves a ...

متن کامل

Numerical solution of time-dependent foam drainage equation (FDE)

Reduced Differental Transform Method (RDTM), which is one of the useful and effective numerical method, is applied to solve nonlinear time-dependent Foam Drainage Equation (FDE) with different initial conditions. We compare our method with the famous Adomian Decomposition and Laplace Decomposition Methods. The obtained results demonstrated that RDTM is a powerful tool for solving nonlinear part...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014